registered   |   log in
  中文

mxene academic

 
contact us

hotline:

17715390137

Tel/Wechat:

  18101240246 (Technology)

0512-68565571

Emailmxenes@163.com (Sales Engineer)bkxc.bonnie@gmail.com

Scan the code to follow or search the official account on WeChat: 

2D Materials Fronrier After paying attention, 

click on the lower right corner to contact us, 

Enter enterprise WeChat.

Professional Services Online

mxene academic
position: home > mxene academic > mxene catalysis

ACS Catalysis: MXenes for high temperature catalysis

source:beike new material Views:4805time:2020-08-10 QQ Academic Group: 1092348845

    MXenes has a wide range of applications in many fields such as energy storage and conversion, photocatalysis, water deionization, electromagnetic shielding, biosensors, etc. Recently, it was also investigated MXenes at relatively high temperatures 550  O C) catalytic applications under. However, it has not yet been reported to involve a higher temperature ≥ 600  O C) and a high concentration of the oxidant (40% carbon dioxide )  severe conditions like MXenes based catalyst.

Achievements

    Recently, Auburn University ‘s Carlos A. Carrero professor in the top international journal ACS Catalysis published entitled Insights at The Genesis of INTO A Selective and Coke-Resistant MXene for the Catalyst Based at The Dry Reforming of Methane " papers. We report a multi-layer V 2 CT x  MXene (mV 2 CT x ) as a precursor for the catalysis of carbon oxides, which converts CH 4 and carbon dioxide into synthesis gas through methane dry gas reforming (DRM) The V 2 O 3 −V 8 C 7 / mV 2 CT x catalyst generated in situ undergoes a redox mechanism, exhibits high reactivity and selectivity, and is unprecedentedly stable. V2O3 and V8C7 grown in situ modified mV 2 CT x to make better use of the V site, thus making VThe activity of 2 O 3 −V 8 C 7 / mV 2 CT x catalyst is four times higher than that of V 2 AlC MAX phase and commercial vanadium carbide (VC).

Figure  1  Structure of mV 2 CT x  MXene .

Figure  2 Structure and morphology of  V 2 AlC and mV 2 CT x  MXene .

Figure  3  Conversion rates of CH 4 and carbon dioxide.

Figure  4  CH 4 and carbon dioxide conversion activity.


Figure  5  Comparison of CH 4 conversion of various catalysts .

Figure  6 Conversion of CH 4 and carbon dioxide after carburization .

Figure  7 DRM response within  5.5 h .

Figure  8  DRM reaction mechanism.

in conclusion

       Spectroscopy, and isotope labeling experiments microscopy results show that the original mV 2 CT X during dehydration, produces oxide carbide (V 2 O . 3 -V . 8 C . 7 / mV 2 CT X ) , further In the presence of CO 2 , additional V2O3 nanocrystals are generated between the surface and the multilayer structure These oxide particles react with CH 4 and are further carbonized in situ to transform into 8 C 7 nanocrystals. This study provides insight into the dynamics, structure, and mechanics of mV 2 CT x as a DRM selectivity and the origin of anti-carbon deposition catalysts. mV 2 CT x and MXenes at relatively high temperatures≥ 500 o C) It has broad application prospects as a precursor, carrier and catalyst.


Original link:

https://pubs.acs.org/doi/abs/10.1021/acscatal.0c00797

Source: MXene Academic


 

Reminder: Beijing Beike New Material Technology Co., Ltd. supplies products only for scientific research, not for humans
All rights reserved © 2019 beijing beike new material Technology Co., Ltd 京ICP备16054715-2号
advisory
phone
Email:mxenes@163.com
Tel:+86-17715390137
scan

scan
WeChat