咨询热线:
17715390137
18101240246
18914047343
邮件:mxenes@163.com
扫码关注或微信搜索公众号:
二维材料Fronrier
关注后点击右下角联系我们,
进入企业微信。
专业服务在线
已传文件:photo/1601175022.png
文章简介:
MOFs具有结构可控性、孔隙率可调性和易功能化修饰等优势,使其成为纳米药物的良好载体,但其生理稳定性较差,严重限制了在生物医学方面的应用。锌基MOFs在水中稳定性很差,尤其是在酸性水缓冲液中。镐基MOFs对含磷酸盐的缓冲液非常敏感,如磷酸盐缓冲盐水(PBS)和RPMI-1640培养基,两者都有较高的磷酸盐离子浓度,这一敏感性是由于Zr离子和客体磷酸盐离子之间有较强的结合亲和力。而无金属的COFs稳定性强,但生物相容性很差,不适宜用于生化研究。
为了促进MOFs的生物应用,MOFs纳米颗粒的外表面功能化通过在不饱和金属位点上的配位结合、与预功能化连接物的共价结合以及配体交换已经实现。尽管外表面功能化已取得成功,但迄今为止仅有少数易操作和可推广的刺激响应性细胞内药物释放系统。虽然磷酸盐离子可以引发许多Zr基MOFs的分解,但以均匀多孔的MOFs纳米颗粒为载体的磷酸盐响应药物递送系统尚未见报道,因为生理上的磷酸盐离子对MOFs的分解是不可控制的,尤其是在体内环境中。因此,Zhantong Wang等人设计了一种生理稳定性高、磷酸盐刺激响应功能强的ZrMOF使得MOFs在生物医学应用上更进一步。
新型MOFs纳米颗粒原位聚合策略,即用功能化的聚合物包裹纳米颗粒,不仅为包裹的纳米颗粒提供内在稳定性,而且为纳米颗粒提供一种刺激响应性分解机制。作者为了将不同单体的功能聚合物包裹在MOF纳米颗粒表面,首先在MOFs表面用BMAP固定,再引入自由基引发剂AIBN,在BMAP上引发聚合反应后形成表面涂层,从而制备不同聚合物保护的MOFs。
版权所有 © 2019 北京北科新材科技有限公司
All rights reserved.京ICP备16054715-2号 |